Правильная четырехугольная пирамида вписана в сферу радиуса 12 см. Найдите объем пирамиды, если сторона ее основания равна 6√2 см

Anechka201 Anechka201    3   01.05.2020 20:01    8

Ответы
us05042007 us05042007  14.10.2020 05:52

Дана правильная четырехугольная пирамида SABCD, вписанная в сферу радиуса 12 см со стороной a основания, равной 6√2 см.

Проведём осевое сечение через диагональ d основания пирамиды.

d =  6√2*√2 = 12 см.

Расстояние ОР от центра сферы до плоскости основания пирамиды по Пифагору : ОР = √(12² - 6²) = √(144 - 36) = √108 = 6√3 см.

Отсюда находим высоту пирамиды Н = 12 - 6√3 = 6(2 - √3) см.

Площадь основания So = a² = (6√2)² = 72 см².

Объём пирамиды V = (1/3)SoH = (1/3)*72*(6(2 - √3)) = (288 - 144√3) см³.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия