Постройте сечение треугольной пирамиды плоскостью, проходящей через центр основания параллельно боковой грани. вычислите периметр сечения, если каждое ребро пирамиды равно 2 см.

UlyanaAleks UlyanaAleks    1   26.05.2019 03:40    3

Ответы
Expert228666 Expert228666  22.06.2020 12:22

ответ: 4 см

Объяснение (подробно) :

   Обозначим данную пирамиду МАВС. О - центр её основания. Центром основания данной пирамиды - правильного треугольника - является точка пересечения его высот, (биссектрис и медиан)  

  Для построения нужной плоскости проведем ОР параллельно высоте МН боковой грани АМС, и КТ параллельно ребру АС основания. Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, эти плоскости параллельны.

   Центр ∆ АВС делит медиану ВН в отношении 2:1, считая от вершины В ( свойство медиан треугольника).  Плоскость сечения КРС параллельна ∆ АМС и  является треугольником, подобным ему. Коэффициент подобия равен ВК:ВА=ВО:ВН=2:3. Периметр сечения относится к периметру грани АМС как 2:3. Периметр ∆АМС=3•2=6.

   Р (КРТ)=6•2/3=4 см


Постройте сечение треугольной пирамиды плоскостью, проходящей через центр основания параллельно боко
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия