Площадь правильного шестиугольнику равна 64. найти площадь шестиугольника последовательным соединением середин его сторон?

Nikita67566 Nikita67566    1   28.02.2019 09:50    1

Ответы
MoonRiad MoonRiad  23.05.2020 16:49

Данный правильный 6-иугольник  состоит из 6 правильных треугольников со стороной а.       S = 6*[a^2 *(кор3)/4] = 64.

Новый 6-иугольник также будет правильным, но со стороной b, равной апофеме исходного 6-иугольника:

b = a(кор3)/2.

Его площадь:

S1 = 6*[b^2 *(кор3)/4] = (3/4)*6*[a^2 *(кор3)/4] = (3/4)*S = 48.

ответ: 48

ПОКАЗАТЬ ОТВЕТЫ
zukhra9087 zukhra9087  23.05.2020 16:49

Площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. У этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.

SΔ= ½ ab · sin γ

S = ½ · ¼a² · (√3)/2 = \frac{\sqrt{3}a^2}{16} (кв.ед.)

Из формулы площади шестиугольника S=\frac{3 \sqrt{3} a^2}{2} выражаем сторону а:

a^2 = \frac{2S}{3 \sqrt{3}} 

a^2 = \frac{128}{3 \sqrt{3}}

Подставляя в формулу площади треугольника, находим, что SΔ = 8/3 кв.ед.

6SΔ = 16 кв.ед.

Площадь полученного шестиугольника равна 64-16=48 (кв.ед.) 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия