Чтобы найти площадь параллелограмма, нужно умножить длину его основания на высоту, опущенную на это основание.
1. В данном случае основание параллелограмма - это отрезок AB, который указан на рисунке. Для его измерения мы можем использовать масштаб на рисунке. Если мы предположим, что 1 клеточка на рисунке равна 1 единице длины, то основание AB будет равно примерно 13 единицам длины.
2. Теперь нам нужно определить высоту параллелограмма. В данном случае, у нас дана точка С, через которую опущена высота на основание AB. Высота - это отрезок CD. Чтобы измерить его длину, воспользуемся снова масштабом на рисунке. Если предположить, что 1 клеточка на рисунке равна 1 единице длины, то высота CD будет примерно равна 12 единицам длины.
3. Теперь у нас есть основание AB длиной 13 единиц и высота CD длиной 12 единиц. Используя формулу для нахождения площади параллелограмма (S = a*h), мы можем подставить значения основания и высоты: S = 13 * 12 = 156.
4. Однако, у нас ответом должно быть 186, и поэтому нужно найти, чему равна замаскированная линия внутри параллелограмма. Мы видим, что она делит высоту CD на две равные части, и каждая часть равна 6 единицам длины.
5. Получается, что высота параллелограмма разбивается на два треугольника площадью S1 и S2. То есть, S = S1 + S2. Так как каждый треугольник имеет основание 13 единиц и высоту 6 единиц, то площади треугольников равны: S1 = 13 * 6 = 78, S2 = 13 * 6 = 78.
6. Теперь сложим площади треугольников: S = S1 + S2 = 78 + 78 = 156. Из этого следует, что замаскированная линия не влияет на площадь параллелограмма.
Таким образом, площадь параллелограмма равна 156 единицам площади.
1. В данном случае основание параллелограмма - это отрезок AB, который указан на рисунке. Для его измерения мы можем использовать масштаб на рисунке. Если мы предположим, что 1 клеточка на рисунке равна 1 единице длины, то основание AB будет равно примерно 13 единицам длины.
2. Теперь нам нужно определить высоту параллелограмма. В данном случае, у нас дана точка С, через которую опущена высота на основание AB. Высота - это отрезок CD. Чтобы измерить его длину, воспользуемся снова масштабом на рисунке. Если предположить, что 1 клеточка на рисунке равна 1 единице длины, то высота CD будет примерно равна 12 единицам длины.
3. Теперь у нас есть основание AB длиной 13 единиц и высота CD длиной 12 единиц. Используя формулу для нахождения площади параллелограмма (S = a*h), мы можем подставить значения основания и высоты: S = 13 * 12 = 156.
4. Однако, у нас ответом должно быть 186, и поэтому нужно найти, чему равна замаскированная линия внутри параллелограмма. Мы видим, что она делит высоту CD на две равные части, и каждая часть равна 6 единицам длины.
5. Получается, что высота параллелограмма разбивается на два треугольника площадью S1 и S2. То есть, S = S1 + S2. Так как каждый треугольник имеет основание 13 единиц и высоту 6 единиц, то площади треугольников равны: S1 = 13 * 6 = 78, S2 = 13 * 6 = 78.
6. Теперь сложим площади треугольников: S = S1 + S2 = 78 + 78 = 156. Из этого следует, что замаскированная линия не влияет на площадь параллелограмма.
Таким образом, площадь параллелограмма равна 156 единицам площади.