Периметр прямоугольного треугольника 24 см, а радиус окружности, описанной около него 1 0см . найдите радиус окружности, вписанной в треугольник.

hahafbdch hahafbdch    1   08.09.2019 12:30    0

Ответы
zelenukanna2002 zelenukanna2002  07.10.2020 00:51
Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы. Гипотенуза является диаметром окружности, описанной около этого треугольника. Значит гипотенуза равна 1*2 = 2 см
Радиус окружности вписанной в прямоугольный треугольник можно вычислить по формуле  r = (a + b - c) / 2, где a и b -катеты,  с  - гипотенуза.
a + b + c = 24
a + b + 2 = 24
a + b = 22
r = ( 22 - 20)/2 = 1 см
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия