Центр описанной около прямоугольника окружности лежит на пересечении его диагоналей, причем эта диагональ является диаметром описанной окружности. В нашем случае полупериметр прямоугольника (сумма двух его смежных сторон) равен АВ+ВС = 12:2 = 6см.
ВС=2*АВ (дано) => 3*AB=6см, АВ=2см, ВС=4см.
АС=√(АВ²+ВС²) (по Пифагору) или АС = √(4+16) = 2√5 см. Это диаметр. Значит радиус равен √5см.
ответ: радиус окружности, описанной около данного прямоугольника, равен R=√5см.
Центр описанной около прямоугольника окружности лежит на пересечении его диагоналей, причем эта диагональ является диаметром описанной окружности. В нашем случае полупериметр прямоугольника (сумма двух его смежных сторон) равен АВ+ВС = 12:2 = 6см.
ВС=2*АВ (дано) => 3*AB=6см, АВ=2см, ВС=4см.
АС=√(АВ²+ВС²) (по Пифагору) или АС = √(4+16) = 2√5 см. Это диаметр. Значит радиус равен √5см.
ответ: радиус окружности, описанной около данного прямоугольника, равен R=√5см.