Основания трапеции равны 4 и 16. найдите радиусы окружностей, вписанной в трапецию и описанной около неё, если известно, что эти окружности существуют. с рисунком.
Так как вписанная и описанная окружности существуют, то данная трапеция равнобедренной.
По свойства описанного четырехугольника, суммы его противоположных сторон равны:
Две стороны AD и ВС известны, две другие АВ и СD равны между собой, тогда:
Проведем высоты BH и СК, равные диаметру вписанной окружности. Тогда отрезок НК будет равен отрезку ВС, а оставшаяся длина отрезка АD распределится поровну между отрезками АН и КD. Получаем: ;
Рассмотрим треугольник АВН. По теореме Пифагора:
Так как найден диаметр вписанной окружности, то можно найти и радиус:
Проведем диагональ трапеции AC. По теореме Пифагора для треугольника АСК получим:
Рассмотрим треугольник АСD. Окружности, описанные около заданной трапеции и около треугольника ACD совпадают. Тогда найдем радиус описанной окружности треугольника ACD через теорему синусов: отношение стороны треугольника к синусу противолежащего угла есть удвоенный радиус описанной окружности. Удобно записать соотношение в следующем виде:
Неизвестный синус найдем из прямоугольного треугольника АКС:
По свойства описанного четырехугольника, суммы его противоположных сторон равны:
Две стороны AD и ВС известны, две другие АВ и СD равны между собой, тогда:
Проведем высоты BH и СК, равные диаметру вписанной окружности. Тогда отрезок НК будет равен отрезку ВС, а оставшаяся длина отрезка АD распределится поровну между отрезками АН и КD. Получаем:
;
Рассмотрим треугольник АВН. По теореме Пифагора:
Так как найден диаметр вписанной окружности, то можно найти и радиус:
Проведем диагональ трапеции AC. По теореме Пифагора для треугольника АСК получим:
Рассмотрим треугольник АСD. Окружности, описанные около заданной трапеции и около треугольника ACD совпадают. Тогда найдем радиус описанной окружности треугольника ACD через теорему синусов: отношение стороны треугольника к синусу противолежащего угла есть удвоенный радиус описанной окружности. Удобно записать соотношение в следующем виде:
Неизвестный синус найдем из прямоугольного треугольника АКС:
Выражаем R и подставляем выражение для синуса:
ответ: радиус вписанной окружности ; радиус описанной окружности