Основания прямоугольной трапеции равны 9 см и 17 см,а диагональ делит ее тупой угол пополам.найдите площадь тапеции.

stalker1897ox9hzs stalker1897ox9hzs    2   09.03.2019 08:20    23

Ответы
dashusha0703 dashusha0703  06.06.2020 23:04

Диагональ делит тупой угол пополам. 

Так как основания трапеции параллельны, угол между диагональю и большим основанием равен половине тупого угла, как накрестлежащий.

Поэтому треугольник, образованный диагональю, боковой стороной и основанием - равнобедренный с равными углами при диагонали, как при основании.

Отсюда боковая сторона равна 17 см.

Опустив из тупого угла высоту на большее основание, получим прямоугольный треугольник с катетами

1)=высота и

2)=(17-9)=8 от основания.

Гипотенуза в нем равна основанию и равна 17 см. 

Находим высоту по теореме Пифагора:

h=√(17²- 8²)=15 см

Площадь трапеции равна произведению ее высоты на полусумму оснований

S=15(9+17):2=195 см² 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия