Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 60. Диагональ этой трапеции перпендикулярна её боковой стороне. Каждое боковое ребро пирамиды образует с плоскостью основания угол 60. Найдите боковые ребра пирамиды

veronkagavrily veronkagavrily    1   18.04.2021 22:55    11

Ответы
needlife needlife  18.05.2021 22:55

Данная пирамида не существует.

Объяснение:

Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.

Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):

AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9

Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.

Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.

Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):

NB = AN = 9√2

ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:

NA= NB = 9√2, ND= DC = 9.


Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия