Основанием пирамиды является прямоугольный треугольник с катетами a и a*корень из 3. найдите объём пирамиды, если каждое ее боковое ребро наклонено к плоскости основания под углом в 30°.

killpvpglava killpvpglava    2   21.08.2019 19:40    0

Ответы
Dimalchik Dimalchik  05.10.2020 09:56
В основании прямоугольный треугольник ABC с прямым углом C. С теоремы Пифагора (или обратив внимание на соотношение катетов) находим гипотенузу AB=2a.
Найдем высоту пирамиды. Поскольку боковые ребра наклонены под одинаковыми углами к плоскости основания, проекции этих ребер на основание совпадают (каждая из них находится из прямоугольного треугольника, одним из катетов которого является высота пирамиды, а углом напротив нее является угол в 30°). Отсюда следует, что вершина пирамиды проектируется в центр окружности, описанной вокруг треугольника, являющегося основанием пирамиды. Но этот треугольник по условию прямоугольный⇒центр описанной окружности лежит в середине гипотенузы, в точке D.                                 AD=AB/2=a; H/AD=tg 30°; H=a/√3;
V =(1/3)S_(основания)·H=(1/3)(1/2)a·a√3·a/√3=a^3/6

ответ: a^3/6
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия