Основанием пирамиды служит параллелограмм, стороны которого равны 4 см и 6 см. боковое ребро, проходящее через вершину тупого угла параллелограмма, является высотой пирамиды, а высоты ее наклонных боковых граней равны 5 см и 2корня из 5 см. найти объем пирамиды.
Откуда по теореме о 3 перпендикулярах: AR перпендикулярно BC ,то есть высота параллелограмма. AT перпендикулярно CD -вторая высота.
Откуда по теореме Пифагора и формуле площади параллелограмма через высоты верно что: (h-высота пирамиды)
S=4*√(20-s^2)=6*√(25-s^2)
16*(20-s^2)=36*(25-s^2)
20*s^2=580
s=√29>5 неверно тк гипотенуза длиннее катета
Рассмотрим другой вариант:
6*√(20-s^2)=4*√(25-s^2)
36*(20-s^2)=16*(25-s^2)
20*s^2=320
s^2=16 обана :)
s=4
высота на 4
h=√25-16=3
S=4*3=12
Объем: V=1/3*12*4=16 О :)
ответ: видимо 16.