Основанием пирамиды mabcd служит ромб abcd, ac = 8, bd = 6. высота пирамиды равна 1. все двугранные углы при основании равны. найдите площадь полной поверхности пирамиды.

Анна02000 Анна02000    2   09.03.2019 22:50    1

Ответы
KARINALEMANN KARINALEMANN  24.05.2020 12:51

Если провести апофемы (высоты боковых граней), то из оснований этих апофем высота пирамиды "видна" под одинаковым углом. Это означает, что 1. все апофемы равны. 2. проекция апофемы на основание - это радиус вписанной окружности (в основание).

Ромб в основании разбивается диагоналями на четыре прямоугольных треугольника с катетами 3 и 4, поэтому сторона ромба равна 5, а высота к гипотенузе такого треугольника, - то есть радиус вписанной окружности - равна 3*4/5 = 12/5.

Итак, проекция апофемы на основание равна 2,4 а высота пирамиды 1. Отсюда апофема равна корень(1^2 + (12/5)^2) = 13/5.

Периметр ромба 5*4 = 20, площадь боковой поверхности (1/2)*20*13/5 = 26.

Площадь основания 6*8/2 = 24, складываем, получаем 

ответ 50

 

Между прочим, Sosn/Sboc = 12/13, это косинус угла между боковой гранью (любой) и основанием. Это можно было и сразу понять, если рассмативать основание как сумму ортогональных проекций боковых граней. (Треугольник, образованный апофемой, её проекцией на основание, и высотой пирамиды, подобен треугольнику со сторонами 5,12,13, то есть косинус угла между гранью и основанием 12/13)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия