Если в пирамиде боковые ребра наклонены к основанию под одним углом (или равны), то высота проецируется в центр окружности, описанной около основания. Центр окружности, описанной около прямоугольного треугольника, - середина гипотенузы. Итак, О - середина гипотенузы АВ, МО - высота пирамиды, ОА = ОВ = ОС - проекции боковых ребер на плоскость основания, ∠МАО = ∠МАВ = ∠МАС = 60° - угол между боковыми ребрами и основанием.
АВ = 2ВС = 2а по свойству катета, лежащего напротив угла в 30°. ОА = ОВ = а/2 ΔМВО: ∠МОВ = 90°, tg∠MBO = MO/OB. MO = OB · tg 60° = a/2 · √3 = a√3/2
Центр окружности, описанной около прямоугольного треугольника, - середина гипотенузы.
Итак, О - середина гипотенузы АВ, МО - высота пирамиды, ОА = ОВ = ОС - проекции боковых ребер на плоскость основания, ∠МАО = ∠МАВ = ∠МАС = 60° - угол между боковыми ребрами и основанием.
АВ = 2ВС = 2а по свойству катета, лежащего напротив угла в 30°.
ОА = ОВ = а/2
ΔМВО: ∠МОВ = 90°, tg∠MBO = MO/OB.
MO = OB · tg 60° = a/2 · √3 = a√3/2