Основание равнобокой трапеции равна 8 и 18 см найти радиус вписанной в трапецию

anmag anmag    3   09.03.2019 14:30    2

Ответы
анарка3 анарка3  24.05.2020 11:08

Опять Пифагор затесался, придется сделать, хотя задача устная.

Равнобедренная трапеция ABCD, AD = 18, ВС = 8, можно вписать окружность. Поэтому боковая сторона равна (18 + 8)/2 = 13. 

Проводим высоту ВН. Ясно ,что АН = (18 - 8)/2 = 5.

Треугольник АВН - пифагоров (5, 12, 13), то есть высота трапеции 12,

площадь трапеции S = 13*12 = 156.

Периметр P = 13*4 = 52;

радиус вписанной окружности 2*S/P = 2*13*12/(13*4) = 6;

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия