Основание прямой призмы – равнобочная трапеция, одно из оснований которой в два раза больше другого. непараллельные боковые грани призмы – квадраты. высота призмы равна 6 см. площадь боковой поверхности призмы равна 144 см . вычислите объем призмы.

Tatyna83 Tatyna83    3   01.07.2019 04:10    62

Ответы
dimas1410 dimas1410  02.10.2020 17:01
ABCDA₁B₁C₁D₁_прямая призма .
Допустим основание трапеция ABCD ;AB =CD = AA₁ =6 см ;AD | | BC ;  AD=2x ;  BC =x ; Sбок =144 см².

V  =S(ABCD)*AA₁--> ?
Sбок =144 см² ; 
Sбок =(AB+BC+ CD +DA)*AA₁;
(6+x+6+2x ) *6 =144 ⇒x=4.
h =√((AB² - ((AD-BC)/2)²) =√((6² -((8-4)/2)²) =√(36 -4) =4√2 (см).
S (ABCD)= (AD+BC)/2 * h =(8+4)/2*4√2 =24√2 (см²);
 V   = S(ABCD)*AA₁ = 24√2 см²*6 см= 144√2 см³.

ответ : 144√2 см³
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия