Все стороны ромба равны:
АD = Pabcd / 4 = 20/4 = 5 см
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Пусть АС = 8 см, тогда АО = 4 см.
ΔAOD прямоугольный, египетский, ⇒ ОD = 3 см. BD = 6 см.
Так как высота равна меньшей диагонали, то АА₁ = 6 см.
V = Sосн · AA₁
Площадь ромба равна половине произведения его диагоналей:
Sabcd = 1/2 AC · BD = 1/2 · 8 · 6 = 24 см²
V = 24 · 6 = 144 см³
Все стороны ромба равны:
АD = Pabcd / 4 = 20/4 = 5 см
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Пусть АС = 8 см, тогда АО = 4 см.
ΔAOD прямоугольный, египетский, ⇒ ОD = 3 см. BD = 6 см.
Так как высота равна меньшей диагонали, то АА₁ = 6 см.
V = Sосн · AA₁
Площадь ромба равна половине произведения его диагоналей:
Sabcd = 1/2 AC · BD = 1/2 · 8 · 6 = 24 см²
V = 24 · 6 = 144 см³