Основание наклонной призмы - квадрат со стороной 6 см; одно из диагональных сечений призмы перпендикулярно плоскости основания и является ромбом с углом 60 градусов. найдите объём призмы
АВСДА1В1С1Д1 - наклонная призма, АА1С1С - ромб (диагональное сечение), ∠А1АС=60°. В квадратном основании АС - диагональ, АС=а√2=6√2 см. В ромбе все стороны равны, значит АА1=АС=6√2 см. В ромбе АА1С1С опустим высоту А1К на сторону АС. Исходя из условия задачи (АА1С1С⊥АВСД) А1К⊥АВСД, значит А1К - высота призмы. В тр-ке АА1К А1К=АА1·sin60°=6√2·√3/2=3√6 см. Объём призмы: V=S·h=a²h=AB²·A1К=36·3√6=108√6 см³.
В квадратном основании АС - диагональ, АС=а√2=6√2 см.
В ромбе все стороны равны, значит АА1=АС=6√2 см.
В ромбе АА1С1С опустим высоту А1К на сторону АС. Исходя из условия задачи (АА1С1С⊥АВСД) А1К⊥АВСД, значит А1К - высота призмы.
В тр-ке АА1К А1К=АА1·sin60°=6√2·√3/2=3√6 см.
Объём призмы: V=S·h=a²h=AB²·A1К=36·3√6=108√6 см³.