Основание ad прямоугольной трапеции abcd находится в плоскостиα, с которой боковая сторона ab (ab> cd) образует угол ∡bab1=u° острый угол трапеции ∡bad=b°. определи синус угла между плоскостью α и плоскостью трапеции и докажи, что величина угла не зависит от длины сторон трапеции.

GangstaPro GangstaPro    3   19.09.2019 23:20    47

Ответы
Давидкрyт Давидкрyт  08.10.2020 03:19

  Угол между плоскостью α и плоскостью трапеции равен углу между прямыми, проведенными перпендикулярно к одной точке на АD в плоскости α и плоскости трапеции, т.е. линейному углу двугранного угла, образуемого этими плоскостями.  Пусть АВ=а. Тогда расстояние от В до плоскости α перпендикуляр ВВ1=а•sinu°. Наклонная ВН перпендикулярна АD. ∆ ВАН прямоугольный, ВН=а•sinb° В1Н -проекция ВН на плоскость α и по т. о 3-х перпендикулярах также перпендикулярна АD. ∠ВНВ1 – искомый. sin∠ВНВ1=ВВ1:ВН= а•sinu°: а•sin b°=sinu°: sin b° и при величине углов, равных данным по условию, не зависит от длины сторон трапеции.


Основание ad прямоугольной трапеции abcd находится в плоскостиα, с которой боковая сторона ab (ab>
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия