Основание ac равнобедренного треугольника abc равно 16. окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания ac в его середине. найдите радиус окружности, вписанной в треугольник abc
(((центр вписанной в угол окружности лежит на биссектрисе...)))
боковая сторона АВ с продолжением будет касательной к обеим окружностям.
если провести радиусы обеих окружностей к АВ,
то получится прямоугольная трапеция с основаниями-радиусами
высотой, равной 8+8 (тк. отрезки касательных равны...)))
и второй боковой стороной, равной 12+r
а дальше т.Пифагора:
(12+r)^2 = 16^2 + (12-r)^2
(12+r)^2 - (12-r)^2 = 16^2
(12+r - (12-r))*(12+r + 12-r) = 16^2
2r * 24 = 16*16
r = 16/3 = 5 целых 1/3