Осевое сечение конуса представляет собой равностороний треугольник АВС площадью S
найдем сторону треугольника b
S = 1/2*b^2*sin60 =√3/4*b^2
b=√4S/√3
центр описанного шара точка О
точка пересечения медиан равностороннего треугольника АВС точка О
точка пересечения медиан делит АК на отрезки в отношении AO : OK = 2 : 1
образующая ВК - сторона треугольника АВС
медиана АК перпендикулярна к ВК
отрезок ОК - искомое расстояние. найдем его
АК = АС*sin60 =b*sin60
ОК = 1/3*AK =1/3*b*sin60 =1/3 *√(4S/√3) *√3/2=√(4S√3)/6
ОТВЕТ √(4S√3)/6
Осевое сечение конуса представляет собой равностороний треугольник АВС площадью S
найдем сторону треугольника b
S = 1/2*b^2*sin60 =√3/4*b^2
b=√4S/√3
центр описанного шара точка О
точка пересечения медиан равностороннего треугольника АВС точка О
точка пересечения медиан делит АК на отрезки в отношении AO : OK = 2 : 1
образующая ВК - сторона треугольника АВС
медиана АК перпендикулярна к ВК
отрезок ОК - искомое расстояние. найдем его
АК = АС*sin60 =b*sin60
ОК = 1/3*AK =1/3*b*sin60 =1/3 *√(4S/√3) *√3/2=√(4S√3)/6
ОТВЕТ √(4S√3)/6