Определить объём правильной четырёхугольной пирамиды, зная угол её бокового ребра с плоскостью основания альфа и площадь её диагонального сечения s. ( ответ 2/3 * s * sqrt (s) * sqrt ( ctg альфа )

tryx1 tryx1    2   09.03.2019 02:20    0

Ответы
Wilde163 Wilde163  24.05.2020 08:57

В таких задачах важно что-то удачно обозначить :

Пусть половина диагонали квадрата в сосновании пирамиды равна х. Тогда 

площадь основания равна Socn = (2*х)^2/2 = 2*x^2;

высота пирамиды H = x*ctg(alfa);

объем пирамиды V = (1/3)*Socn*H = (2/3)*x^3*ctg(alfa);

площадь диагонального сечения S = 2*x*H/2 = x*H;

Подставляем высоту, получаем S = x^2*ctg(alfa); x = SQRT(S/ctg(alfa));

Подставляем это выражение в объем, получаем ответ.

V = (2/3)*S*SQRT(S*ctg(alfa));

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия