Один из внешних углов равнобедренного треугольника равен 32 градусам. найти угол между основанием этого треугольника и высотой треугольника, проведённой из вершины угла при основании.

СашаСтоляров1 СашаСтоляров1    3   28.02.2019 21:30    144

Ответы
Bake2017 Bake2017  23.05.2020 17:27

Треугольник АВС - равнобедренный (угол В - тупой), АВ=ВС, 

из точки А опускаем | на продолжение стороны ВС   -   АК|СК,

угол АВК = 32град

Найти: угол КАС

 

Треугольник АВС - равнобедренный :

угол ВАС = углу С = угол АВК : 2 = 32:2 = 16 (град) (угол АВК - внешний)

Треугольник АВК - прямоугольный :

угол КАВ = 90-32 = 58 (град)

 

Угол КАС = угол ВАС + угол КАВ = 16+58 = 74 (град)

 

ПОКАЗАТЬ ОТВЕТЫ
Nastya251551 Nastya251551  23.05.2020 17:27

Пусть дан равнобедренный треугольник АВС. По условию задачи, один из внешних углов равен 32 градуса. Тогда Внутренний угол С как смежный угол равен 180-32=148(градусов). Так как в равнобедренном треугольнике углы при основании равны, а сумма внутренни углов равна 180 градусов, то углы А и В равны (180-148)/2=16(градусов).

Рассмотрим треугольник ACD. Так как угол С - тупой, то высота, проведённая из вершины при основании (допустим АD),лежит вне треугольника. В полученном треугольнике АСD угол D прямой, угол ACD=32 градуса. Тогда угол СAD равен 180-(90+32)=58 градусов.Значит искомый угол ACD равен 58+16=74 градуса.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия