очень в четверди выходет 2


очень в четверди выходет 2

zhigalkinden zhigalkinden    2   14.03.2021 00:06    0

Ответы
David228666333 David228666333  13.04.2021 00:09

См. Объяснение

Объяснение:

№ 1

1) Равные углы:

∠2 =∠10 - как углы соответственные;

∠3 = ∠8 - как углы соответственные;

∠6 = ∠9 - как углы вертикальные;

∠7 = ∠10 - как углы вертикальные;

∠8 = ∠5 - как углы вертикальные.

2) Суммы следующих углов равны 180°:

∠8 +∠9+∠10 = 180° - так как 3 этих угла образуют развёрнутый  угол;

∠9 +∠10+∠5 = 180° - так как 3 этих угла образуют развёрнутый  угол;

∠7 +∠6+∠5 = 180° - так как 3 этих угла образуют развёрнутый  угол;

∠6 +∠8+∠9 = 180° - так как 3 этих угла образуют развёрнутый  угол;

∠1 +∠2 = 180° - так как 2 этих угла образуют развёрнутый  угол;

∠3 +∠4 = 180° - так как 2 этих угла образуют развёрнутый  угол.

3) Из приведённых рассуждений о равенстве углов следует доказательство теоремы о сумме внутренних углов треугольника.

Приведём это доказательство.

Дан треугольник, внутренние углы которого ∠2, ∠ 3 и ∠6.

Необходимо доказать, что сумма внутренних углов треугольника равна 180°, то есть ∠2 + ∠ 3 +∠6  = 180°.

Для доказательства через вершину ∠6 проведём прямую а, параллельную прямой b, и продолжим стороны треугольника за линию а. Рассмотрим образовавшиеся углы ∠5, ∠6, ∠7, ∠8, ∠9, 10.

∠2 = ∠10 - как углы соответственные при параллельных прямых a и b и секущей (1-9);

∠3 = ∠8 - как углы соответственные при параллельных прямых a и b и секущей (9-4);

∠6 = ∠9 - как углы вертикальные.

∠8 +∠9+∠10 = 180° - так как 3 этих угла образуют развёрнутый  угол,

при этом ∠8 =∠3,  ∠9 = ∠6, ∠10 = ∠2, -  значит, в приведённом равенстве:

∠8 можно заменить на ∠3,  

∠9 можно заменить на ∠6,

∠10 можно заменить на ∠2.

Получаем:

∠3 +∠6+∠2 = 180°, что и требовалось доказать.

Таким образом, сумма внутренних углов треугольника равна 180°.    

№ 2

Да, можно утверждать, что величина ∠ 1 = ∠3 + ∠6.

1) ∠1 - это внешний угол по отношению к данному треугольнику;

2) ∠1 является смежным с ∠2, значит их сумма равна 180°:

∠2 + ∠1 = 180°

3) Так как сумма внутренних углов треугольника равна 180°, то:

∠2 + ∠3 + ∠6 = 180°

4) Сравним два полученных равенства:

∠2 + ∠1 = 180° - равенство, приведённое в пункте 2;

∠2 + ∠3 + ∠6 = 180° -  равенство, приведённое в пункте 3.

Можно заметить, что к одному и тому же ∠2  прибавляем в первом случае ∠1, а во втором случае - ∠3 и ∠6, и в обоих случаях получаем один и тот же ответ: 180°.

Это возможно только тогда, когда:

∠ 1 = ∠3 + ∠6.

Мы доказали, что Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с данным внешним углом.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия