Пусть даны прямоугольные треугольники ABC и A1B1C1 с ∠С=∠С1=90°, ∠A=∠A1 и гипотенузы AB и A1B1 равны.
∠B=90°-∠A
∠B1=90°-∠A1
⇒
∠B=∠B1
и ΔABC=ΔA1B1C1 по стороне и двум прилежащим к ней углам (т.е. по второму признаку равенства Δ)
Теорема доказана.
Пусть даны прямоугольные треугольники ABC и A1B1C1 с ∠С=∠С1=90°, ∠A=∠A1 и гипотенузы AB и A1B1 равны.
∠B=90°-∠A
∠B1=90°-∠A1
⇒
∠B=∠B1
и ΔABC=ΔA1B1C1 по стороне и двум прилежащим к ней углам (т.е. по второму признаку равенства Δ)
Теорема доказана.