Объем призмы вычисляют произведением площади её основания на высоту. V=SH Так как данные призмы имеют равную высоту, отношение их объёмов будет отношением площадей их оснований. Основание правильной шестиугольной призмы состоит из 6 правильных треугольников. Поэтому отношение площади основания меньшей призмы к площади основания исходной равно отношению площади одного треугольника меньшего основания к площади одного треугольника большего основания. Рассмотрим приложенный рисунок основания призмы. Сторона ОН меньшего основания является высотой треугольника АОВ. Из 6 таких треугольников состоит большее основание. Пусть сторона АО=а. Тогда ОН=а*sin(60°)=а√3):2 Коэффициент подобия треугольников НОМ и АОВ= НО:АО=(а√3):2):а=(√3):2 Отношение площадей подобных фигур равно квадрату коэффициента их подобия: S НОМ: S АОВ=[(√3):2)]²=3/4 Следовательно, искомый объём равен 3/4 от V, т.е. 3V/4
V=SH
Так как данные призмы имеют равную высоту, отношение их объёмов будет отношением площадей их оснований.
Основание правильной шестиугольной призмы состоит из 6 правильных треугольников.
Поэтому отношение площади основания меньшей призмы к площади основания исходной равно отношению площади одного треугольника меньшего основания к площади одного треугольника большего основания.
Рассмотрим приложенный рисунок основания призмы.
Сторона ОН меньшего основания является высотой треугольника АОВ.
Из 6 таких треугольников состоит большее основание.
Пусть сторона АО=а.
Тогда ОН=а*sin(60°)=а√3):2
Коэффициент подобия треугольников НОМ и АОВ=
НО:АО=(а√3):2):а=(√3):2
Отношение площадей подобных фигур равно квадрату коэффициента их подобия:
S НОМ: S АОВ=[(√3):2)]²=3/4
Следовательно, искомый объём равен 3/4 от V, т.е. 3V/4