Окружность вписана в трапецию АВСD
Значит из точек А,И,С,D к окружности проведены касательные.
Касательная перпендикулярна радиусу, проведенному в точки касания
ОК⊥ВС
ОМ⊥СD
OP⊥AD
OT⊥AB
⇒ ОС, ОВ, ОА и ОD - биссектрисы углов трапеции
Отрезки касательных, проведённых из одной точки, равны. (См рис. )
КМ = СМ = 1 см
РD = DM = 4 см
ВК=ВТ=АТ=AP=r
Так как сумма углов, прилежащих к стороне CD равна 180°
А биссектрисы делят угол пополам, то Δ СOD прямоугольный.
∠СOD=90°
ОM^2=CM·MD
OM^2=1·4
OM=2
r=0M=2
BC=2+1=3 cм
AD=2+4=6 cм
АВ=2+2=4 см
S( трапеции)=(BC+AD)·AB/2=(3+6)·4/2=18 cм²
Окружность вписана в трапецию АВСD
Значит из точек А,И,С,D к окружности проведены касательные.
Касательная перпендикулярна радиусу, проведенному в точки касания
ОК⊥ВС
ОМ⊥СD
OP⊥AD
OT⊥AB
⇒ ОС, ОВ, ОА и ОD - биссектрисы углов трапеции
Отрезки касательных, проведённых из одной точки, равны. (См рис. )
КМ = СМ = 1 см
РD = DM = 4 см
ВК=ВТ=АТ=AP=r
Так как сумма углов, прилежащих к стороне CD равна 180°
А биссектрисы делят угол пополам, то Δ СOD прямоугольный.
∠СOD=90°
ОM^2=CM·MD
OM^2=1·4
OM=2
r=0M=2
BC=2+1=3 cм
AD=2+4=6 cм
АВ=2+2=4 см
S( трапеции)=(BC+AD)·AB/2=(3+6)·4/2=18 cм²