Некоторая прямая, что паралельна основанию mk равнобедренного треугольника mpk, пресекает стороны mp и pk в точках b и c соответсвенно. точка a делит отрезок mk в соотношении 1 к 3, начиная от точки m, bc = 2am. найти угол mab

онелдпрлпр1 онелдпрлпр1    1   02.08.2019 05:10    1

Ответы
зайка583 зайка583  29.09.2020 22:38
Зная, что точка A делит отрезок MK в соотношении 1 к 3, начиная от точки M, запишем: MA/AK=1/3. Тогда, если MA=x, то AK=3x. Кроме этого, так как BC=2AM, то ВС=2x.

Найдем длину отрезка МК: МК=МА+АК=х+3х=4х.

Заметим, что МК=2ВС - основание треугольника в 2 раза больше, чем нгекий отрезок, параллельный ему же и соединяющий боковые стороны. Значит, ВС - средняя линия. Получим следующие равные отрезки: МВ=ВР=РС=СК.

Проведем высоту РН. Так как высота равнобедренного треугольника является также и медианой, то ВН=НС=х.

Рассмотрим треугольники РНВ и ВАМ. В этих треугольниках ВР=МВ; ВН=МА=х; углы В и М равны, так как они являются соответственными при пересечении параллельных прямых ВС и МК секущей МВ. Значит, по двум сторонам и углу между ними эти треугольники равны. В равных треугольниках против равных стороны (в данном случае ВР и МВ) лежат равные углы (в данном случае ВНР и МАВ). Угол ВНР прямой, значит и угол МАВ прямой.

ответ: 90 градусов
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия