Привет! Я буду рад стать твоим школьным учителем и помочь тебе разобраться в этом вопросе.
Давай разберемся, что такое прямоугольный треугольник. Это треугольник, у которого один из углов равен 90 градусам (прямой угол). У него есть два катета (две стороны, которые выходят из прямого угла) и гипотенуза (самая длинная сторона, напротив прямого угла).
Теперь, давай решим задачу, которую ты задал. У нас есть прямоугольный треугольник, и известно, что один из его катетов на 5 см больше другого. Мы также знаем, что гипотенуза равна 25 см.
Давай обозначим катеты буквами. Пусть меньший катет будет равен "х" см. Тогда больший катет будет равен "х + 5" см.
Используя теорему Пифагора, мы можем записать следующее:
(х^2) + (х + 5)^2 = 25^2
Давай решим это уравнение пошагово:
1. Раскроем скобки в левой части уравнения:
х^2 + х^2 + 10х + 25 = 625
3. Удалим 625 из обеих частей уравнения:
2х^2 + 10х - 600 = 0
4. Разделим все слагаемые на 2 для упрощения:
х^2 + 5х - 300 = 0
Теперь, чтобы решить это квадратное уравнение, мы можем либо факторизовать его, либо использовать квадратное уравнение. Давай воспользуемся квадратным уравнением.
1. Используя формулу дискриминанта, найдем значение дискриминанта (D):
D = b^2 - 4ac
= (5^2) - 4(1)(-300)
= 25 + 1200
= 1225
2. Теперь найдем корни квадратного уравнения, используя формулу:
х = (-b ± √D) / 2a
х = (-5 ± √1225) / (2*1)
х = (-5 ± 35) / 2
Таким образом, у нас два возможных значения для "х":
х1 = (-5 + 35) / 2 = 30 / 2 = 15
х2 = (-5 - 35) / 2 = -40 / 2 = -20
Так как стороны не могут быть отрицательными, мы получаем, что "х" равен 15.
Значит, меньший катет равен 15 см, а больший катет равен 15 + 5 = 20 см.
Теперь мы можем найти площадь прямоугольного треугольника по формуле:
Площадь = (больший катет * меньший катет) / 2 = (15 * 20) / 2 = 150 / 2 = 75 см².
Таким образом, площадь прямоугольного треугольника составляет 75 квадратных сантиметров.
Надеюсь, это решение было тебе полезно и понятно! Если у тебя возникнут еще вопросы, не стесняйся задавать их. Я всегда готов помочь!
Давай разберемся, что такое прямоугольный треугольник. Это треугольник, у которого один из углов равен 90 градусам (прямой угол). У него есть два катета (две стороны, которые выходят из прямого угла) и гипотенуза (самая длинная сторона, напротив прямого угла).
Теперь, давай решим задачу, которую ты задал. У нас есть прямоугольный треугольник, и известно, что один из его катетов на 5 см больше другого. Мы также знаем, что гипотенуза равна 25 см.
Давай обозначим катеты буквами. Пусть меньший катет будет равен "х" см. Тогда больший катет будет равен "х + 5" см.
Используя теорему Пифагора, мы можем записать следующее:
(х^2) + (х + 5)^2 = 25^2
Давай решим это уравнение пошагово:
1. Раскроем скобки в левой части уравнения:
х^2 + х^2 + 10х + 25 = 625
2. Соберем все слагаемые вместе:
2х^2 + 10х + 25 = 625
3. Удалим 625 из обеих частей уравнения:
2х^2 + 10х - 600 = 0
4. Разделим все слагаемые на 2 для упрощения:
х^2 + 5х - 300 = 0
Теперь, чтобы решить это квадратное уравнение, мы можем либо факторизовать его, либо использовать квадратное уравнение. Давай воспользуемся квадратным уравнением.
1. Используя формулу дискриминанта, найдем значение дискриминанта (D):
D = b^2 - 4ac
= (5^2) - 4(1)(-300)
= 25 + 1200
= 1225
2. Теперь найдем корни квадратного уравнения, используя формулу:
х = (-b ± √D) / 2a
х = (-5 ± √1225) / (2*1)
х = (-5 ± 35) / 2
Таким образом, у нас два возможных значения для "х":
х1 = (-5 + 35) / 2 = 30 / 2 = 15
х2 = (-5 - 35) / 2 = -40 / 2 = -20
Так как стороны не могут быть отрицательными, мы получаем, что "х" равен 15.
Значит, меньший катет равен 15 см, а больший катет равен 15 + 5 = 20 см.
Теперь мы можем найти площадь прямоугольного треугольника по формуле:
Площадь = (больший катет * меньший катет) / 2 = (15 * 20) / 2 = 150 / 2 = 75 см².
Таким образом, площадь прямоугольного треугольника составляет 75 квадратных сантиметров.
Надеюсь, это решение было тебе полезно и понятно! Если у тебя возникнут еще вопросы, не стесняйся задавать их. Я всегда готов помочь!