Найти площадь основания правильной треугольной пирамиды, высота которой равна 5 корень четвертой степени из 3, а боковая грань образует с плоскостью угол 45

lolii0ikolik lolii0ikolik    1   16.07.2019 00:40    0

Ответы
berezovskayati berezovskayati  21.09.2020 07:27
Подставь свои числа просто

пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия