Найти экстремумы функции. Геометрия​


Найти экстремумы функции. Геометрия​

kotlarovaira9 kotlarovaira9    2   29.06.2021 22:14    0

Ответы
natashalife natashalife  29.07.2021 22:14

x₁=2;    y= -12 min

x₂= -1; y= 15 max

Объяснение:

y=2x^3-3x^2-12x+8\\\\y'=[2x^3-3x^2-12x+8]'=6x^2-6x-12=0\\\\6x^2-6x-12=0\\\\6(x^2-x-2)=0\\\\x^2-x-2=0\\\\x=\frac{1\frac{+}{}\sqrt{1+8} }{2} =\frac{1\frac{+}{}3 }{2} \\\\x_1=2; x_2=-1

y(2)=16-12-24+8= -12;

y( -1)= -2-3+12+8= 15

ПОКАЗАТЬ ОТВЕТЫ
AlyaMrr AlyaMrr  29.07.2021 22:14

Відповідь:

Пояснення:

Перша  прохідна функції:

y' = 6·x^2-6·x-12

6·x^2-6·x-12 = 0

x1 = -1

x2 = 2

__+-1-2+>y'

 зростає  max         спадає          min      зростає

Обчислимо значення функції

f(-1) = 15

f(2) = -12

Відповідь:

fmin = -12, fmax = 15

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия