5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.
5) Все углы 60° (равносторонний треугольник)
6) ∠KPE=90-60=30°
7) ∠PMN=∠MNP=(180-100)\2 = 40°
9) ∠NMK=∠NKM=180-130=50°
∠MNK=180-100=80°
10) ∠CED=180-140=40°
∠CDE=180-(80+40)=60°
11)∠BAC=180-150=30°
∠CBA=90-30=60°
5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.
5) Все углы 60° (равносторонний треугольник)
6) ∠KPE=90-60=30°
7) ∠PMN=∠MNP=(180-100)\2 = 40°
9) ∠NMK=∠NKM=180-130=50°
∠MNK=180-100=80°
10) ∠CED=180-140=40°
∠CDE=180-(80+40)=60°
11)∠BAC=180-150=30°
∠CBA=90-30=60°