Пусть ромб - ABCD. O - точка пересечения диагоналей. OP - перпендикуляр из точки О на AB. Диагонали ромба пересекаются под прямым углом.
Рассмотрим прямоугольные треугольники PBO и OBA. Они подобны по 2-м углам.
Таким образом:
угол
Т.о.
Пусть ромб - ABCD. O - точка пересечения диагоналей. OP - перпендикуляр из точки О на AB. Диагонали ромба пересекаются под прямым углом.
Рассмотрим прямоугольные треугольники PBO и OBA. Они подобны по 2-м углам.
Таким образом:
угол
Т.о.