Найдите радианную меру углов и укажите в какой четверти находится угол:
150°; -200°​

privetloll privetloll    1   10.03.2021 10:22    184

Ответы
kudzhan kudzhan  26.01.2024 07:04
Добрый день! Рад ради выступить в роли вашего школьного учителя и помочь разобраться с вопросом о радианной мере углов.

Перейдем сначала к определению радианной меры углов. Радианная мера углов вводится с целью удобного измерения углов и выражения тригонометрических функций. Это специальная система измерения углов, где радианом считается отношение длины дуги к радиусу окружности.

Для того чтобы найти радианную меру угла, нам нужно знать соотношение между градусами и радианами. Это соотношение такое: 180 градусов = π радианов. Из этого равенства можно составить пропорцию, по которой можно переводить градусы в радианы:

180° градусов = π радианов
1° градус = π/180 радианов

Теперь перейдем к решению поставленной задачи. Нам нужно найти радианную меру угла и узнать, в какой четверти находится данный угол.

1. Для угла 150°:
Переведем градусы в радианы по соотношению:
1° = π/180 радианов
150° = 150 * (π/180) = 5π/6 радианов.

Таким образом, радианная мера угла 150° равна 5π/6 и он находится во второй четверти, так как угол больше 90° и меньше 180°.

2. Для угла -200°:
Аналогично, переведем градусы в радианы:
1° = π/180 радианов
-200° = -200 * (π/180) = -10π/9 радианов.

Таким образом, радианная мера угла -200° равна -10π/9 и он находится в третьей четверти, так как угол больше 180° и меньше 270°.

Вот мы и нашли радианную меру углов и определили, в какой четверти они находятся. Если у вас остались какие-либо вопросы, пожалуйста, задайте их!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия