Найдите площадь трапеции, вершины которой имеют координаты (2; -2), (8; -4), (8; 8), (2; 10)

raistarasenko raistarasenko    2   14.07.2019 21:00    7

Ответы
РомаУзденов РомаУзденов  20.09.2020 18:09
В задании фигура с указанными координатами неправильно названа - это параллелограмм.
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А      Точка В          Точка С  
 Ха Уа             Хв  Ув           Хс  Ус
   2 -2                 8 -4               8    8
 Длины сторон:
          АВ              ВС                  АС  
6.32455532        12          11.66190379
Периметр Р  = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.

Треугольник АСД
Точка А        Точка С           Точка Д
Ха Уа             Хс Ус                 Хд Уд
 2  -2               8    8                   2   10
АС                                  СД                    АД  
11.6619038           6.32455532            12
Периметр Р =  29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия