Найдите площадь равнобокой трапеции,основания которой равны 15 см и 33 см, а диагонали являются биссектрисами острых углов.

КристинаСоболева КристинаСоболева    3   19.05.2019 23:20    2

Ответы
Nadezda1997 Nadezda1997  19.05.2019 23:20

нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту   вк   на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882)  сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса)   равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия