Найдите площадь правильного шестиугольника, вписанного в окружность, радиус которой равен 2 дм.

Daniil201058715 Daniil201058715    3   16.03.2019 21:00    3

Ответы
alina3741 alina3741  25.05.2020 17:19
Сторона правильного шестиугольника равна радиусу Описанной около него окружности. Соединим концы стороны шестиугольника с центром окружности. Получим правильный треугольник. Площадь правильного треугольника равна S=(√3/4)*R². Таких треугольников 6.
В нашем случае S=6√3дм².
Или:
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Высота правильного треугольника по Пифагору равна √(а²-а²/4)=а√3/2.
Тогда его площадь равна S=(1/2)*a*a√3/2 или S=a²√3/4. Вот мы и вывели формулу. далее, как уже было сказано: площадь шести таких треугольников равна а²√3*3/2. а=2дм. S=6√3дм²
ответ: S=6√3 дм²
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия