Найдите площадь остроугольного треугольника авс, если известно, чтоbac = 60°, ab = 4, а медиана am =корню из 19

lizahatemehoten lizahatemehoten    1   07.03.2019 20:20    6

Ответы
dashasmirnova85 dashasmirnova85  22.05.2020 19:46

Проведём высоту ВД=АВ*cos30=4*0,866=3,46. Из точки М проведём к АС высоту МЕ. Получим два прямоугольных подобных треугольника ДВС и ЕМС(поскольку у низ по условию ВМ=МС). МЕ параллельна ВД и проходит через середину ВС следовательно это средняя линия треугольника ДВС. Отсюда МЕ=ВД/2=1,73.  И ДЕ=ЕС.  Косинус угла АМЕ равен cos аме=МЕ/AM=1,73/(корень из 19)=0,3967. Отсюда угол =66гр. 24 мин. Синус этого угла равен =0,92.  Отсюда АЕ=АМ*sinАМЕ=4,36*0,92=4. АС=АЕ+ЕС=4+2=6.(поскольку ДЕ=ЕС=АЕ-АД=4-2=2). Отсюда площадь треугольника S=1/2*АС*ВД=1/2*6*3,46=10,38.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия