Для начала, нам потребуется найти координаты середины стороны CA треугольника ABC. Середину стороны можно найти путем нахождения среднего значения x-координаты конечных точек стороны и среднего значения y-координаты конечных точек стороны.
Середина стороны CA будет иметь координаты, равные среднему значению x-координаты точек C и A, и среднему значению y-координаты точек C и A.
То есть, координаты середины стороны CA будут (1/2, -8).
Так как средняя линия треугольника параллельна стороне CB, то ее длина будет равна длине стороны CB. Для нахождения длины стороны CB, нам нужно найти расстояние между точками C и B.
Расстояние между двумя точками можно найти с помощью формулы расстояния между двумя точками в декартовой системе координат:
d = √((x2 - x1)^2 + (y2 - y1)^2),
где (x1, y1) и (x2, y2) - координаты двух точек.
Применяя эту формулу к точкам C(4, -10) и B(-8, 6), получаем:
Для начала, нам потребуется найти координаты середины стороны CA треугольника ABC. Середину стороны можно найти путем нахождения среднего значения x-координаты конечных точек стороны и среднего значения y-координаты конечных точек стороны.
Середина стороны CA будет иметь координаты, равные среднему значению x-координаты точек C и A, и среднему значению y-координаты точек C и A.
Среднее значение x-координаты: (-3 + 4) / 2 = 1/2
Среднее значение y-координаты: (-6 - 10) / 2 = -16 / 2 = -8
То есть, координаты середины стороны CA будут (1/2, -8).
Так как средняя линия треугольника параллельна стороне CB, то ее длина будет равна длине стороны CB. Для нахождения длины стороны CB, нам нужно найти расстояние между точками C и B.
Расстояние между двумя точками можно найти с помощью формулы расстояния между двумя точками в декартовой системе координат:
d = √((x2 - x1)^2 + (y2 - y1)^2),
где (x1, y1) и (x2, y2) - координаты двух точек.
Применяя эту формулу к точкам C(4, -10) и B(-8, 6), получаем:
d = √((-8 - 4)^2 + (6 + 10)^2) = √((-12)^2 + (16)^2) = √(144 + 256) = √(400) = 20.
Таким образом, длина стороны CB и средней линии треугольника ABC будет равна 20 единицам.