Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см

NAstiu1 NAstiu1    2   30.04.2020 06:10    2

Ответы
pastoling pastoling  14.10.2020 03:59

Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см

Объяснение:

АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см.   Пусть ВК⊥АМ , СР⊥АМ.

S(круга)=πr².  Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.

Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒

КР=6 см, АК=РМ=(12-6) :2=3 (см).

ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√18=3√2(см).

ВК-высота  трапеции, значит r=(3√2)/2 см.

S(круга)= π ( (3√2)/2 )²=4,5π (см²)


Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периме
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия