Напишите уравнение сферы с центром в точке 0(1; 2; -1), касающейся координатной плоскости: а) Oxy; б) Oxz; в) Oyz

ktoto2956 ktoto2956    2   04.03.2022 04:42    18

Ответы
fari85851 fari85851  16.01.2024 00:42
Добрый день!

Для того, чтобы написать уравнение сферы, нам нужно знать координаты ее центра и радиус.

Уравнение сферы обычно записывается в следующем виде:

(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2,

где а, b, c - координаты центра сферы, а r - радиус сферы.

Так как в данном вопросе центр сферы имеет координаты 1, 2, -1, то мы можем написать первую часть уравнения следующим образом:

(x - 1)^2 + (y - 2)^2 + (z + 1)^2 = r^2.

Теперь нам остается узнать радиус сферы. Для этого мы используем информацию о том, что сфера касается определенной координатной плоскости.

а) Для того, чтобы сфера касалась плоскости Oxy, то есть плоскости z = 0, все z-координаты точек на сфере должны быть равны радиусу. То есть z + 1 = r, где r - радиус. Заменяем z + 1 на r в уравнении сферы:

(x - 1)^2 + (y - 2)^2 + r^2 = r^2.

Упрощаем уравнение, вычитая r^2 из обеих частей:

(x - 1)^2 + (y - 2)^2 = 0.

Это значит, что сфера целиком лежит на плоскости Oxy и имеет радиус, равный нулю. По сути, это точка (1, 2, -1) без размеров.

б) Для того, чтобы сфера касалась плоскости Oxz, то есть плоскости, где координата y равна нулю (y = 0), все y-координаты точек на сфере должны быть равны радиусу. То есть y - 2 = r, где r - радиус. Заменяем y - 2 на r в уравнении сферы:

(x - 1)^2 + r^2 + (z + 1)^2 = r^2.

Упрощаем уравнение, вычитая r^2 из обеих частей:

(x - 1)^2 + (z + 1)^2 = 0.

Это значит, что сфера целиком лежит на плоскости Oxz и имеет радиус, равный нулю. То есть сфера представляет собой точку (1, 2, -1) без размеров.

в) Для того, чтобы сфера касалась плоскости Oyz, то есть плоскости, где координата x равна нулю (x = 0), все x-координаты точек на сфере должны быть равны радиусу. То есть x - 1 = r, где r - радиус. Заменяем x - 1 на r в уравнении сферы:

r^2 + (y - 2)^2 + (z + 1)^2 = r^2.

Упрощаем уравнение, вычитая r^2 из обеих частей:

(y - 2)^2 + (z + 1)^2 = 0.

Это значит, что сфера целиком лежит на плоскости Oyz и имеет радиус, равный нулю. То есть сфера представляет собой точку (1, 2, -1) без размеров.

Надеюсь, этот ответ понятен для вас. Если у вас возникнут еще какие-то вопросы, я с радостью помогу вам!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия