Напишите доказательство теоремы о свойстве углов вписанного в окружность четырехугольника

MrDog2005 MrDog2005    3   28.05.2019 17:10    0

Ответы
Demontino2016 Demontino2016  26.06.2020 10:53
Рассмотрим произвольный треугольник ABC и обозначим буквой О точку пересечение его биссектрис. Проведём из точки О перпендикуляры ОК, OL и ОМ соответственно к сторонам АВ, ВС и СА. так как точка О равноудалена от сторон треугольника АВС., то ОК= OL=Ov. Поэтому окружность с центром О радиуса ОК проходит через точки К L и М Стороны треугольника АВС касаются этой окружности в точках К L М так как они перпендикулярны к радиусам ОК OL и ОМ.Значит, окружность с центром О радиуса Ок является вписанной в треугольник АВС. Теорема доказана. 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия