Надо вычислить площадь равнобедренной трапеции описанной около круга радиусом корень из 3 если угол при основании 60 градусов.

alexey1009 alexey1009    1   07.06.2019 12:00    5

Ответы
Zalis1 Zalis1  07.07.2020 08:29
АВ - касательная
ОН - радиус, следовательно ОН перпендикулярно АВ
Треугольник АОН прямоугольный.
Треугольники АОН и АОМ прямоугольные с общей гипотенузой и равным катетом. Значит, они равны. АО - биссектрисса.
По определению
tg(α/2)=OH/AH
Отсюда 
АН=OH/tg(α/2)=√3/tg30⁰=√3/(√3/3)=3
Основание АВ=2*АН=6
Высота СN равно двум радиусам
CN=2√3
Треугольник CNB прямоугольный
tgα=CN/NB
NB=CN/tgα=2√3/tg60⁰=2√3/√3=2
Основание CD=AB-2NB=6-2*2=2
Площадь трапеции
S=(AB+CD)/2*CN=(6+2)/2*2√3=8√3
ответ: 8√2
Надо вычислить площадь равнобедренной трапеции описанной около круга радиусом корень из 3 если угол
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия