Надо! стороны треугольника равны 25; 29 и 36 см. точка вне плоскости треугольника удалена от каждой из его сторон на 17 см. найти расстояние от данной точки до плоскости треугольника.

лосимус лосимус    2   25.06.2019 17:00    3

Ответы
leedercools leedercools  20.07.2020 19:05
У нас получилась пирамида с апофемой А каждой грани, равной А =17,
высота пирамиды неизвестна, обозначим её Н.
Если наклонные (т.е. апофемы) равны, а по условию это так, то равны и их проекции на плоскость треугольника. Эти проекции представляют собой радиусы вписанной в треугольник окружности, поскольку они перпендикулярны сторонам треугольника и равны между собой.
Радиус вписанной окружности r = √((p -a)(p - b)(p - c)/p)
a = 25, b = 29, c = 36
полупериметр р = (25 + 29 + 36)/2 = 45
r = √(20·16·9)/45 = 8
Тогда расстояние от точки до плоскости(высота пирамиды) равна
Н = √(А² - r²) = √( 17² - 8²) = 15
ответ: 15 см
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия