На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE.
1. Докажи равенство треугольников ΔAFD и ΔCFE.
2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 31°.
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE:
ΔBA
= Δ
.
По какому признаку доказывается это равенство?
По второму
По третьему
По первому
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы стороны
EAB
CBD
ABE
BEA
BDC
DCB
DB
BC
EB
AE
CD
BA
По какому признаку доказывается равенство ΔAFD и ΔCFE?
По второму
По третьему
По первому
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы стороны
FAD
ADF
CEF
EFC
DFA
FCE
EF
CE
FA
AD
DF
FC
2. Величина угла, под которым перпендикуляр CD пересекает BA —
°.