На сторонах параллелограмма abcd, тупой угол которого равен 120 градусов, отложены векторы ab и ad, такие что |ab|=3 и |ad|=5. найдите угол между векторами ab и ac.
Векторы AD и ВС равны, так как равны их модули (противоположные стороны параллелограмма) и они сонаправлены. Тогда мы можем найти модуль вектора АПС по теореме косинусов. |АС|=√(9+25+2*3*5*1/2) (так как угол АВС тупой) =7. Тогда косинус угла ВАС равен из этой же теоремы Cos(<BAC)= (a²+b²-c²)/(2ab) (угол образован сторонами а и b) или Cos(<BAC)=(9+49-25).(2*3*7)=0,786 (примерно). Угол по таблице равен 38,2°.
Или так: введем систему координат с точкой их пересечения в начале вектора А. Тогда имеем точки: А(0;0), В(1,5;3√3/2), С(6,5;3√3/2) Вектор AВ{1,5;3√3/2}, |AB| = 3. вектор АС{6,5;3√3/2}, |AC|=√(42,25+6,75)= √49=7. Угол между векторами равен скалярному произведению этих векторов, деленному на протзведение их модулей. Cos(<BAC)= (Xab*Xac+Yab*Yac)/(|AB|*|AC|) или Cos(<BAC)=(9,75+6,75)/(3*7) ≈ 0,786. <BAC ≈ 38,2°
Тогда мы можем найти модуль вектора АПС по теореме косинусов.
|АС|=√(9+25+2*3*5*1/2) (так как угол АВС тупой) =7.
Тогда косинус угла ВАС равен из этой же теоремы
Cos(<BAC)= (a²+b²-c²)/(2ab) (угол образован сторонами а и b) или
Cos(<BAC)=(9+49-25).(2*3*7)=0,786 (примерно).
Угол по таблице равен 38,2°.
Или так: введем систему координат с точкой их пересечения в начале вектора А.
Тогда имеем точки: А(0;0), В(1,5;3√3/2), С(6,5;3√3/2)
Вектор AВ{1,5;3√3/2}, |AB| = 3.
вектор АС{6,5;3√3/2}, |AC|=√(42,25+6,75)= √49=7.
Угол между векторами равен скалярному произведению этих векторов, деленному на протзведение их модулей.
Cos(<BAC)= (Xab*Xac+Yab*Yac)/(|AB|*|AC|) или
Cos(<BAC)=(9,75+6,75)/(3*7) ≈ 0,786.
<BAC ≈ 38,2°