На рисунке ∠MKL = ∠NLK, ∠NKL = ∠MLK. Докажи, что треугольники KOM и LON равны. 

∆KML = ∆LNK по второму признаку равенства треугольников,

Следовательно, по второму признаку равенства треугольников,

к этой стороне прилегают равные углы.

равных углов равны.

то ∠MKO = ∠NLO, так как значения разности

∆KOM = ∆LON.

АлексейМв АлексейМв    3   17.11.2020 13:58    26

Ответы
марусяice1 марусяice1  17.12.2020 13:59

ответ:ответ в файле все правильно

Объяснение:


На рисунке ∠MKL = ∠NLK, ∠NKL = ∠MLK. Докажи, что треугольники KOM и LON равны. ∆KML = ∆LNK по второ
ПОКАЗАТЬ ОТВЕТЫ
polly132 polly132  17.12.2020 13:59

ответ:∆KML = ∆LNK по второму признаку равенства треугольников,

так как KL – общая сторона и по условию задачи

к этой стороне прилегают равные углы.

Тогда из равенства треугольников KML и LNK следует, что

KM = LN, ∠M = ∠N.

Если ∠MKO = ∠MKL – ∠NKL, ∠NLO = ∠NLK – ∠MLK,

то ∠MKO = ∠NLO, так как значения разности

равных углов равны.

Следовательно, по второму признаку равенства треугольников,

∆KOM = ∆LON.

Объяснение:на фото

P.S. мне просто нужно выполнить вызов 10 ответов за 2 дня


На рисунке ∠MKL = ∠NLK, ∠NKL = ∠MLK. Докажи, что треугольники KOM и LON равны. ∆KML = ∆LNK по второ
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия