: На продолжении ребра SA правильного тетраэдра SABC отмечена точка Р так, что SA = 2 AP. Точки М и N – середины ребер ВС и АС соответственно. Прямая PN пересекает ребро SC в точке Q. а) Докажите, что плоскость QMN перпендикулярна ребру SC. б) Найдите объем треугольной пирамиды SQMN, если все ребра тетраэдра равны 4.

Reginka24082007 Reginka24082007    3   14.07.2021 21:09    0

Ответы
stasleraz stasleraz  13.08.2021 22:00

Объяснение:

∠PAN=180°-∠SAC=180-60°=120°

ΔPAN - равнобедренный по AN=PA=2

∠SРQ=(180-120)/2=30°

∠SРQ=180-∠SРQ-∠РSQ=180-30-60=90°

ΔSРQ прямоугольный РQ⊥SС

ΔСNМ - равносторонний Δ со стороной 2

NМ=1/2АВ как средняя линия равностороннего Δ

ΔQNМ равнобедренный поскольку это проекция ΔСNМ

QN=QМ ⇒ QМ ⊥SС

Отсюда плоскость QNМ включающая в себе два пересекающихся отрезка, которые ⊥SС, тоже ⊥SС


: На продолжении ребра SA правильного тетраэдра SABC отмечена точка Р так, что SA = 2 AP. Точки М и
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия