На луче, который начинается в начале координатной системы, отложена точка A(−13;13). Определи, какой угол образует OA с положительной полуосью Ox. ответ: OA с положительной полуосью Ox образует угол °.

smrtmsdns smrtmsdns    2   08.04.2020 11:23    246

Ответы
albinanizaeva albinanizaeva  27.12.2023 19:05
Для определения угла между вектором OA и положительной полуосью Ox нам необходимо воспользоваться тригонометрией.

Пусть точка O - начало координат, A - заданная точка (-13; 13).

1. Найдем длину вектора OA, используя формулу для нахождения модуля вектора:
|OA| = √((-13)^2 + 13^2) = √(169 + 169) = √338 = 2√(2 * 13)

2. Найдем значение тангенса угла между вектором OA и положительной полуосью Ox:
tg(θ) = (координата точки A по y) / (координата точки A по x) = 13 / (-13) = -1

3. Найдем значение угла θ, используя арктангенс:
θ = arctg(-1)

Данная функция может быть определена для различных значений, так как тангенс имеет периодичность, равную π.
Таким образом, угол может быть определен по следующим значениям:
θ = arctg(-1) + πk, где k - целое число.

Решив уравнение arctg(x) = arctg(-1), значение получим при k = 0:
θ = arctg(-1) + π * 0 = arctg(-1)

4. Используя калькулятор, найдем приближенное значение для arctg(-1):
arctg(-1) = -45°

Таким образом, OA с положительной полуосью Ox образует угол -45°.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия