На гипотенузе ab прямоугольного треугольника abc выбрана точка к ,для которой ck=bc.отрезок ck пересекает биссектрису am в её середине.найти углы треугольника abc

AlexeyB1000 AlexeyB1000    3   28.06.2019 23:00    4

Ответы
archik4 archik4  22.07.2020 23:25
Обозначим середину биссектрисы угла А точкой Д, а половину угла А - α.
Для прямоугольного треугольника АМС сторона АМ - гипотенуза. Её середина равноудалена от вершин, тогда АД = ДС и угол ДСА равен α, а угол ДСМ = 90 - α.
Угол В = 90 - 2α, но так как СВ = СК, то и угол ВКС = 90 - 2α.
Рассмотрим треугольник КСВ. В нём угол КСВ = 180-2*(90-2α) = 4α.
Получаем для угла ДСМ 90 - α = 4α.
Отсюда 5α = 90  α = 90 / 5 = 18°.
Тогда острые углы треугольника АВС равны:
Угол А = 2*18 = 36°,
угол В = 90 - 36 = 54°.

На гипотенузе ab прямоугольного треугольника abc выбрана точка к ,для которой ck=bc.отрезок ck перес
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия