Мне осталось решить не много , у меня экзамены скоро, а учитель не проводил консультации, я напишу 2 , решить хотя одну, ну если не трудно посмотрите и вторую)) буду блогадарен)) 1)гипотенуза прямоугольного
треугольника делится на отрезки 5 см и 12 см точкой касания вписанной в треугольник окружности.на какие отрезки делит катет треугольника биссектриса его меньшего угла? 2) дана окружность x^2+y^2-4x-5=0 и точка
с(5,4).напишите уравнение окружности ,имеющей центр в данной точке и касающейся данной окружности внешним образом»
Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.